读研如何学习好图像处理的算法?
网友解答: 1)对于初级入门者一个扎实的基础和对于图像处理理论的完整的、系统的整体认识对于后续的深入研究和实践应用具有非常非常重要的意义。我经常喜欢拿武侠小说《天龙八部》中的一段情节来向
1)对于初级入门者
一个扎实的基础和对于图像处理理论的完整的、系统的整体认识对于后续的深入研究和实践应用具有非常非常重要的意义。
我经常喜欢拿武侠小说《天龙八部》中的一段情节来向读者说明此中的道理,相信读者对这部曾经被多次搬上银幕的金庸作品已经耳熟能详了。书中讲到有个名叫鸠摩智的番僧一心想练就绝世武学,而且他也算是个相当勤奋的人了。但是,他错就错在太过于急功近利,甚至使用道家的小无相功来催动少林绝技。看上去威力无比,而且可以在短时间内“速成”,但实则后患无穷。最终鸠摩智走火入魔,前功尽废,方才大彻大悟。这个故事其实就告诉我们打牢基础是非常重要的,特别是要取得更长足的发展,就更是要对基本原理刨根问底,力求甚解,从而做到庖丁解牛,游刃有余。
一些看似高深的算法往往是许多基础算法的组合提升。例如,令很多人望而却步的SIFT特征构建过程中,就用到了图像金字塔、直方图、高斯滤波这些非常非常基础的内容。但是,它所涉及的基础技术显然有好几个,如果缺乏对图像处理理论的系统认识,你可能会感觉事倍功半。因为所有的地方好像都是沟沟坎坎。
2)对于中级水平者
纸上得来终觉浅,绝知此事要躬行。对于一个具有一定基础的,想更进一步的中级水平的人来说,这个阶段最重要的就是增强动手实践的能力。
还是说《天龙八部》里面的一个角色——口述武功、叹为观止的王语嫣。王语嫣的脑袋里都是武功秘籍,但问题是她从来都没练过一招一式。结果是,然并卵。所以光说不练肯定不灵啊。特别是,如果你将来想从事这个行业,结果一点代码都不会写,那几乎是不可想象的。学习阶段,最常被用来进行算法开发的工具是Matlab和OpenCV。你可以把这两个东西都理解为一个相当完善的库。当然,在工业中C++用得更多,所以Matlab的应用还是很有限的。前面我们讲到,图像处理研究内容其实包括:图像的获取和编解码,但使用Matlab和OpenCV就会掩盖这部分内容的细节。你当然永远不会知道,JPEG文件到底是如何被解码的。
如果你的应用永远都不会涉及这些话题,那么你一直用Matlab和OpenCV当然无所谓。例如你的研究领域是SIFT、SURF这种特征匹配,可以不必理会编解码方面的内容。但是如果你的研究话题是降噪或者压缩,可能你就绕不开这些内容。最开始学的时候,如果能把这部分内容也自己写写,可能会加深你的理解。以后做高级应用开发时,再调用那些库。所以具体用什么,要不要自己写,是要视你所处的阶段和自己的实际情况而定的。以我个人的经验,在我自学的时候,我就动手写了Magic House,我觉得这个过程为我奠定了一个非常夯实的基础,对于我后续的深入研究很有帮助。
3)对于高级进阶者
到了这个程度的读者,编程实现之类的基本功应该不在话下。但是要往深,往高去学习、研究和开发图像处理应用,你最需要的内容就变成了数学。这个是拦在很多处于这个阶段的人面前的一大难题。如果你的专业是应用数学,当然你不会感觉有问题。但如果是其他专业背景的人就会越发感觉痛苦。
如果你的图像处理是不涉及机器学习内容的,例如用Poisson方程来做图像融合,那你就要有PDE数值解方面的知识;如果你要研究KAZE特征,你就必须要知道AOS方面的内容。如果你研究TV降噪,你又要知道泛函分析中的BV空间内容……这些词你可能很多都没听过。总的来说,这块需要的内容包括:复变函数、泛函分析、偏微分方程、变分法、数学物理方法……
如果你要涉足机器视觉方法的内容,一些机器学习和数据挖掘方法的内容就不可或缺。而这部分内容同样需要很强大的数学基础,例如最大似然方法、梯度下降法、欧拉-拉格朗日方程、最小二乘估计、凸函数与詹森不等式……
当然,走到这一步,你也已经脱胎换骨,从小白到大神啦!路漫漫其修远兮,吾将上下而求索。
网友解答:谢谢悟空问答的邀请。学习图像处理的核心在于理解图像的处理算法是何种算法,通常这个过程需要学习相关的数学模型和加工处理过程。――摘自网络。建议学习由北京航空航天出版社出版的书名为《学以致用:精通图像处理经典算法》。希望想了解这方面知识的朋友,此书会对你有所帮助。