极限的ε—δ定义法 证明二元函数极限不存在的方法总结?

证明二元函数极限不存在的方法总结?二元函数在某点处极限(即二重极限)的定义比一元函数极限定义“苛刻”得多,因此二重极限不存在的情形也比一元函数极限不存在的情形更加复杂。证明二元函数在某点处极限不存在是

证明二元函数极限不存在的方法总结?

二元函数在某点处极限(即二重极限)的定义比一元函数极限定义“苛刻”得多,因此二重极限不存在的情形也比一元函数极限不存在的情形更加复杂。证明二元函数在某点处极限不存在是高等数学中“多元函数微分”部分的一种基本题型,本节通过例题来介绍证明此类问题的常见方法。

1、证明二重极限不存在的方法概述。

2、证明沿不同直线极限值不相等。

3、证明沿不同曲线极限值不相等。

4、对例2的评注(二重极限存在性的深入理解)。

5、证明两个累次极限都存在但不相等。

总结求函数极限的方法?

1、利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)2、恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。3、通过已知极限特别是两个重要极限需要牢记。