基于bert的文本相似度 如何用python计算文本的相似度?

如何用python计算文本的相似度?第1步:将每个网页文本分成单词,形成一袋单词。第三步:统计网页(文档)总数M。第三步:统计第一个网页n中的字数,计算第一个网页的第一个字在网页n中出现的次数,然后计

如何用python计算文本的相似度?

第1步:将每个网页文本分成单词,形成一袋单词。第三步:统计网页(文档)总数M。第三步:统计第一个网页n中的字数,计算第一个网页的第一个字在网页n中出现的次数,然后计算出该字在所有文档M中出现的次数,则该字的TF IDF为:n/n*1/(M/M)(还有其他规范化公式,这里是最基本、最直观的公式)。第四步:重复第三步计算网页中所有单词的TF-IDF。第五步:重复第四步计算所有网页中每个单词的TF-IDF值。三。用户查询处理的第一步:用户查询的分词。第二步是根据web数据库(文档)的数据计算用户查询中每个词的TF-IDF值。4余弦相似度用于计算用户查询与每个网页之间的夹角。角度越小,越相似。

怎么在大数据文件记录中对比单个文本相似度?