pytorch实现attention 为了写论文不做深入的研究,代码水平低选择tensorflow还是pytorch比较好?
为了写论文不做深入的研究,代码水平低选择tensorflow还是pytorch比较好?Tensorflow很好,因为您可以直接使用keras因为使用Python有强大的优势。第一,数据采集(网络爬虫技
为了写论文不做深入的研究,代码水平低选择tensorflow还是pytorch比较好?
Tensorflow很好,因为您可以直接使用keras
因为使用Python有强大的优势。第一,数据采集(网络爬虫技术)。2、 强大的科学计算分析库可以进行大规模的数据统计和处理。3、 完美的AI接口,如tensorflow、Python和sklearn,是定量交易最需要的接口。前者属于深度学习,如LSTM算法体系结构,是最有效的股市预测算法之一。后者属于数据挖掘,基于统计概率分布,实现了回归和分类的数学建模。总之,很方便。在项目实现方面,python属于glue语言,计算出的数据模型大多是以JSON的形式进行粘合的。前端非常友好。简而言之,它既快捷又方便。
为什么几乎所有的量化交易都用Python?
让我们从Python的缺点开始。python自发布以来,在学术界实际生产中的应用比工业界多,主要原因是它不够成熟,很多接口不稳定,综合性不够。Tensorflow仍有许多Python不支持的功能,如快速傅立叶变换,但随着Python的发展,这一缺点将逐渐减少。另外,与tensorflow的静态图相比,tensorflow的静态图很容易部署到任何地方(这比许多框架都要好得多),Python的深度学习框架比Python更先进,部署到其他产品上会非常不方便。
优势从一开始就有。尽管tensorflow自2015年发布以来受到了许多方面的青睐,比如theano,但tensorflow使用的是静态计算图。对于新手来说,有太多的新概念需要学习。因此,无论如何开始或构建,使用tensorflow都比python更困难。2017年,Python被团队开放源码的一个主要原因是更容易构建深度学习模型,这使得Python发展非常迅速。在数据加载方面,Python用于加载数据的API简单高效。它的面向对象API来自于porch(这也是keras的设计起源),它比tensorflow的困难API友好得多。用户可以专注于实现自己的想法,而不是被框架本身所束缚。
在速度方面,python不会为了灵活性而放弃速度。虽然运行速度与程序员的水平密切相关,但在相同的情况下,它可能比其他框架更好。另外,如果追求自定义扩展,python也会是首选,因为虽然两者的构造和绑定有一些相似之处,但tensorflow在扩展中需要大量的模板代码,而只有接口和实现是python编写的。