c++教程 什么是射影定理,怎样运用的?

什么是射影定理,怎样运用的?射影定理是针对直角三角形。所谓射影,就是正投影。其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这

什么是射影定理,怎样运用的?

射影定理是针对直角三角形。所谓射影,就是正投影。其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。由三角形相似的性质可得射影定理(又叫欧几里德(Euclid)定理)即直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。公式:对于直角△ABC,∠BAC=90度,AD是斜边BC上的高,射影定理,(AD)^2=BD·DC(AB)^2=BD·BC(AC)^2=CD·BC这主要是由相似三角形来推出的,例如(AD)^2=BD·DC:由图可得三角形BAD与三角形ACD相似,所以AD/BD=CD/AD所以(AD)^2=BD·DC

射影定理怎样证明?

直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)^2=BD·DC, (2)(AB)^2=BD·BC , (3)(AC)^2=CD·BC 。 证明:在 △BAD与△ACD中,∠B ∠C=90°,∠DAC ∠C=90°,∴∠B=∠DAC,又∵∠BDA=∠ADC=90°,∴△BAD∽△ACD相似,∴ AD/BD=CD/AD,即(AD)^2=BD·DC。其余类似可证。 注:由上述射影定理还可以证明勾股定理。由公式(2) (3)得: (AB)^2 (AC)^2=BD·BC CD·BC =(BD CD)·BC=(BC)^2, 即 (AB)^2 (AC)^2=(BC)^2。

向量射影公式?

向量射影定理公式是|a|cosθ=(a·b)/|b|,射影定理,又称“欧几里德定理”,在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。