k均值聚类算法计算步骤 k均值聚类算法原理?

k均值聚类算法原理?第1步:选择k个初始聚类中心,Z1(1)、Z2(1)、ZK(1),其中括号中的序列号是找到聚类中心的迭代操作的第二序列号。聚类中心的向量值可以任意设置。例如,可以选择初始K个模式样

k均值聚类算法原理?

第1步:选择k个初始聚类中心,Z1(1)、Z2(1)、ZK(1),其中括号中的序列号是找到聚类中心的迭代操作的第二序列号。聚类中心的向量值可以任意设置。例如,可以选择初始K个模式样本的向量值作为初始聚类中心。

第二步是根据最小距离准则将模式样本{x}分配给K个聚类中心之一。

假设I=J,则K为迭代运算的次序列号,第一次迭代K=1,SJ为第J个簇,其簇中心为ZJ。

第3步:计算每个聚类中心的新向量值ZJ(k1),j=1,2,K

找到每个聚类域中样本的平均向量:

其中NJ是第j个聚类域中的样本数SJ。以均值向量作为新的聚类中心,可以最小化以下聚类准则函数:

在这一步中,我们需要分别计算K个聚类的样本均值向量,因此称为K-means算法。

第4步:如果J=1,2,K,则返回第二步,逐个重新分类模式样本,并重复迭代操作;

如果J=1,2,则算法收敛,计算结束。